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Smart Grid Projects in USA 

• $4.5 billion 

• Investment Projects ($3.8B) 

• Demonstration Projects ($600M) 

• Training Projects ($100M) 

• Transmission (PMUs) 

• Distribution Automation 

• Customer (smart meters) 
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What is a SMART Grid? 

• Self-heals 

• Motivates and includes the consumer 

• Resists attack 

• Provides power quality for 21st century needs 

• Accommodates all generation and storage options 

• Enables markets 

• Optimizes assets and operates efficiently 
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The Past (before 1960s) 

• Hard wired metering 

• Ink chart recording 

• Light and sound alarming 

• Hard wired remote switching 

• Analog Load Frequency Control (1930s) 

• Economic Dispatch (1950s) 

• ED was first to go digital 
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The Present (since 1960s) 

• The digital control center (SCADA-AGC) 

• The RTU to gather digital data at substation 

• Comm. channel from sub to control center (CC) 

• The SCADA 

 The Data Acquisition from RTU to CC 

 The Supervisory Control signal from CC to RTU 

• The screen based operator display 

• Automatic Generation Control (AGC) 

 The digital algorithm for ED 

 The digital version of LFC 
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Communication for Power System  

 

                                        

Control Center 

RTU RTU RTU 

Third Party 
•Analog measurements 

•Digital states 
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The Present (since 1970s) 

• The Energy Management System (EMS) 

• State Estimation (SE) 

• Static Security Analysis (n-1) 

• Dynamic Security Analysis (stability) 

 Transient, Oscillatory, Voltage 

• Optimal Power Flow based analysis 

 Preventive Action calculation 

 Corrective Action calculation  
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Evolution of Computer Architecture 

• Special real time computers for SCADA-AGC 

• Mainframe computer back ends for EMS 

• Redundant hardware configuration with checkpoint 
and failover 

• Multiple workstation configuration 

 Back-up is more flexible 

• Open architecture initiated 

• CIM (Common Information Model) standard 
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Balancing Authorities 
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West European Power Grid 
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 XinJiang 
Autonomous 

Region 

South 

Central 
East 

Northwest 

North 

Northeast China Grid 

1 BTB 

HVDC 

3 HVDC 

1  500kV AC 

2 parallel 500 kV AC 

1 HVDC 

Tibet 
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Monitoring the Power Grid 

• Visualization 

 Tabular, graphics 

• Alarms 

 Overloaded lines, out-of-limit voltages 

 Loss of equipment (lines, generators,  comm) 

• State estimator 

• Security alerts 

 Contingencies (loading, voltage, dynamic limits) 

 Corrective or preventive actions 
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Control of the Power Grid 
• Load Following – Frequency Control 

 Area-wise 
 Slow (secs) 

• Voltage Control 
 Local and regional 
 Slow to fast 

• Protection 
 Mostly local, few special protection schemes 
 Fast 

• Stability Control 
 Local machine stabilizers 
 Remote special protection schemes 
 Fast 
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Substation Automation 

• Many substations have 

 Data acquisition systems at faster rates 

 Intelligent electronic devices (IED) 

 Coordinated protection and control systems 

 Remote setting capabilities 

 

• Data can be time-stamped by satellite 
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Phasor Measurements 

Super PDC 

PDC PDC PMU 

PMU PMU PMU PMU PMU 
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Each Application – Different Data 

• Monitoring at the control center 

 Needs all data points 

 But at slow rates (every few seconds) 

• Special Protection Schemes 

 Needs few data points 

 But at fast rates (many times a second) 

• Each application must access this data in a 
different way 

 Moving real time data from source to application 
is a complex optimization task 
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Basic GridStat Functionality 

Publishers Subscribers 

Area 
Controller 

Management Plane 

Area Controller 

Load Following 

… 

Generator 
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… 
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Computer Network 
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Control 
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US/EU-Wide 
Monitoring? 
(future??)  

QoS Requirements 

PMU 
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Data Base Issues 

• Real time data base must be distributed 

 Large amounts of calculated data must be part of 
this data base 

• Static data base must be distributed 

• Historical data base will require still another design 

• Substation data bases and system level data bases 
have to be coordinated 

• All data bases in the same interconnection will 
have to be coordinated 

• Standards will be key 
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What is Wide-Area Monitoring, 
Protection and Control? 

• Wide-Area Monitoring Systems (WAMS) 

 First installation of PMUs was called WAMS 

• Wide-Area Protection 

 Event driven 

 Logic processing of non-local inputs/outputs 

 Switching 

 Now called SPS or SIPS 

• Wide-Area Control 

 Multiple non-local input/output 

 Analog input/output 
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How do we check feasibility? 

• Develop controller 

• Test on simulation 

 Nonlinearities 

 Discontinuities (digital control) 

 Time delays (latencies) 

• Test on real time data 

• Test in real time (without closing the loop) 
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A Critical Missing Piece 

Simulation Test Bed for PMU Control Applications 
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State Estimator and PMUs 

• Present 

 PMU measurements added to traditional SE 

 Marginal improvement in accuracy 

 No improvement in update frequency 

• Future 

 PMU-only SE (observability required) 

 Linear, sub-second updates, higher accuracy 

 Substation level/Area level 
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Two-Level Linear State Estimator 

• Substation Level 

 Substation Model 

 Circuit Breaker State Estimator 

 Bus Voltage State Estimator 

 Bad Data Detection & Identification 

• Control Center Level 

 System Model 

 Topology Processor (system level) 

 State Estimator 

 Bad Data Detection & Identification 
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SE Solution at Each Substation 
SE Solution at Control Center 

30 times per second 
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Model Based Control 

• Real Time Model is updated by State Estimator 

 Static model updated in minutes 

• Hundreds of Contingency scenarios studied 

 Operator is alerted 

• Remedial Action can be calculated by OPF 

Can the loop be closed? 

 Faster update of Real Time Model is needed 
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Closing the Loop 

• SE can update faster than SCADA data today 

• Use SE output for monitoring 

 Operator visualization 

 Alarming 

• Calculate Preventive Control and close loop 

• Calculate Corrective control 

 Is it fast enough to close loop? 
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DISTRIBUTION AUTOMATION 

• Measurements along the feeder 

• Switches, transformer taps, shunt capacitor and 
inductor controls 

• Communications: Radio, Power Line Carrier, Fiber 
backhaul 

• Closer voltage control increases efficiency 

• Greater switching ability increases reliability 

• Better coordination with outage management 

• Sets up for distributed generation, demand 
response, electric vehicles or local storage 
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Pic of one feeder with the new 
equipment 
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Switched 
Capacitors 

Regulator 

Recloser 

Francis & Cedar F3, 
Spokane, WA 
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38 

Backward Algorithm 
1. Enter ON-Case Data 

 ZIP Parameters 

 Tap Settings 

 Capacitors Status 

 Demands (P & Q or KVA and P.F.) 

2. Check Switch Capacitors Status 

 If it is ON then extract its value from Q and calculate new demands (KVA and P.F.) 

3. Do Loop 
1. Run Load Allocation 

 Using ZIP parameter for each section 

2. Find New Tap Settings 
 Using EOL setting algorithm in SynerGEE for Voltage Regulator 

3. Run Load Flow 
 Get OFF-Case estimation as results 

4. Check if change in voltages and demands are within acceptable range 
 If YES 

 Finish loop 

 If NO 

 Do loop using new demands and voltages 

4. Find KVA, KW, and KVar Saving 

 Compare with ON-Case 
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Building Automation 

• Smart Meters 

 Gateway between utility and customer 

 Communication to utility and home appliances 

 Time-of-day and real-time rates 

• Applications 

 Optimize energy efficiency and energy cost 

 Demand response 

 Can integrate generation (roof PV), storage (EV) 

• Microgrids 
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Conclusions 

• Controls at the substation level get more 
sophisticated every day 

• Real time data collection increases at the subs 

• Utilizing these measurements and controls at the 
system level remains difficult 

• The communication infrastructure to move this 
data has to be built 

• The software infrastructure to handle the data has 
to be built 

• Application development and testing environments 
are needed 


