

UET Welcomes IEEE PES Seattle Chapter

UniEnergy Technologies

Mission: Be a major global provider of bulk energy storage solutions through innovation, quality and strategic partnerships

We will accomplish this by commercializing break-through vanadium redox flow batteries with new generation high performance electrolytes, field-proven stacks, optimized control/power electronics, and refined "plug & play" containerization

Achievement: UET has successfully developed the world's first flow battery product fully integrated into a single shipping container for rapid and flexible grid deployment

NEW ELECTROLYTE

- ✓ 2X power and energy density
- ✓ -40°C to +50°C
- √ Improved safety

PRODUCT ENGINEERING AND MANUFACTURING

67,000ft² design, development & manufacturing facility in Seattle

FIFI D EXPERIENCE

- ✓ 5MW/10MWh wind firming installation
- ✓ Numerous MW-class microgrid sites

ELECTROLYTE PRODUCTION

- ✓ 1,324,000 ft² production facilities
- ✓ Electrolyte production capacity > 1.5GWh/year
- ✓ ISO9001:2008 Certified

STACK PRODUCTION

- √ 108,000 ft² manufacturing facility
- √ 100MW production capacity
- ✓ ISO9000/14000, GB/T28001 Certified

15 May 2014

Core Technology: Stable and Powerful Vanadium Chemistry

Cathode: $VO_2Cl + 2H^+ + e^- \leftrightarrow VO^{2+} + Cl^- + H_2O$

Anode: $V^{2+} - e^- \leftrightarrow V^{3+}$

Cell: $VO_2Cl + V^{2+} + 2H^+ \leftrightarrow VO^{2+} + V^{3+} + Cl^- + H_2O$

New molecule designed with PNNL's supercomputing and advanced analysis equipment

- > Team of 20 scientists led by Dr. Gary Yang & Dr. Liyu Li who then founded UET in 2012
- Won the US Government' highest Award of Excellence in Technology Transfer to UET
- > Extraordinary electrolyte stability
 - » stable from -40 °C to +50°C
- > 2X energy density improvement
 - → 5X footprint reduction
- > Inherent Safety
 - » Non flammable
 - » No thermal runaway
 - » Reduced chemical volume
 - » Nonreactive with water

+ Containerization

2013 The first Uni.Systems™

<u>April 2014</u> First field deployed Uni.System.AC™

adjacent to UET

4 Battery Containers

- Only 4 states of charge
- 12 stacks; 8 tanks; 8 pumps
- 600 1000V

Power Electronics Container

- PCS & Controls
- Communications
- 480V transformer

UET

UET's Modular and Containerized Uni.System™

- □ Full integration of stacks, electrolytes, balance of plant, power electronics, controls, communications, cooling, and medium voltage transformer
- □ Compact, modular, and scalable 20' containers that meet ISO standards
- □ Proprietary flow architecture and chemistry
- □ 20 safety features including built-in secondary containment & hardware interlock loop
- □ Optimized array of sensors to warrant operational stability and reliability

Containerization yields a high quality, practical product

- 1. Modular, efficient production
- 2. Built-in secondary containment
- 3. Factory integration
- 4. System-level factory testing
- 5. Rated to Transport and Seismic codes
- 6. No onsite building required
- 7. More rapid permitting
- 8. "Plug and Play" deployment
- 9. Incremental deployment
- 10. Option for relocation or removal
 - » Enables lease financing as non-fixed assets

- ✓ Safe
- ✓ Reliable
- ✓ Flexible
- ✓ Affordable

UET

2015 Uni.System.AC™: 500kW/4h; 600kW_{peak}; 2.2MWh_{max}

- ✓ Temperature Agnostic -40 °C to +50 °C
- ✓ SOC Agnostic

 100% capacity access

 no capacity fade
- ✓ Cycle Agnostic

 20-year design life

- √ Factory integration

 precision assembly & QC
- ✓ Parallel Architecture

 array sizes over 20MW
- ✓ Inherently Safe no thermal runaway

- ✓ Plug & Play rapid incremental deployment
- √ 97% Availability

 no stripping or equalizing
- √ 100% recyclable
 disposal contract included

 √ 100% recyclable

 ✓ 100% recyclable

15 May 2014

2015 Uni.System.AC™ Performance Data

	2015 Uni.System.AC™				
Peak Power	700 kW _{AC}				
Maximum Energy	2.2 MWh _{AC}				
Discharge time	1 h	2 h	4 h	8 h	
Power	700 kW _{AC}	600 kW _{AC}	500 kW _{AC}	275 kW _{AC}	
AC Efficiency	65-70%				
Voltage Range	465-1000 V _{DC}			Militarian	
Max. Current	1500 A _{DC}			W157	
Response Time	<100 ms				
Footprint	820 ft ²				
Envelope	41'W x 20'D x 9.5'H				
Total Weight	170,000 kg				
Cycle and Design Life	Unlimited cycles over the 20 year life				
Ambient Temp.	-40°C to 50°C (-40°F to 122°F)				
Self Discharge	Max capacity loss: <2%				

Excellent Safety of the Uni.System™

- ☐ Inherent Safety with Core Technologies
 - » Benign operating temperature: slightly above ambient, operation limit to 50oC
 - » Minimal fire hazard: aqueous, fire retardant electrolytes act as a large heat sink
 - » No thermal run-away: non-reactive with water; no violent electrochemical and chemical reactions; and mixing fully charged electrolytes will raise the system temperature by <20°C
 - » Full system shut-down capability: turning off the pumps stops the chemical reactions within minutes
 - » Benign chemicals: no human health hazards under normal operation beyond corrosiveness of 10% acid solution (3-5 times less acidic than lead-acid batteries)
- Passive Safety by Design
 - » Multi-layer containment: thick-walled rotomolded tanks, coated container steel walls and welded floor, no penetration below electrolyte levels, tertiary containment optional in the field
 - » Electricity safety strictly adherent to codes
 - » Ambient pressure operation: with pressure relief valves, no connection between containers
- □ Active Safety Features
 - » Real time monitoring and automated response
 - » Fire suppression
 - » Hardware Interlock loop
- □ Operation Safety
 - » Onsite control, fault response, remote monitoring, chemical and spill handling codes, disposal contract

Energy Storage for Power Systems, The Big Picture

UET

Total Global Grid Storage

Worldwide installed storage capacity for electrical energy

Source, EPRI 15 May 2014

U.S. Grid Storage Deployments, Circa 2012

Energy Storage Demonstrations in the U.S. - Planned or Under way List is Not Complete

Source, EPRI 15 May 2014

Storage Technologies Overview

Source, EPRI, modified by UET

Energy Storage for Power Systems, Applications

Grid Storage Use Cases (CA AB2514 Storage Procurement)

Rulemaking Use Cases, from OIR Phase 1

			Priority	Use Case Prioritization	Primary Benefit	Conventional Technology Priority #1	Storage Technology Priority #1
Market Revenue,	2	T-Connected Bulk Storage	1	Peaker Plant	Capacity, Energy, A/S	СТ	Battery
plus Capacity Value			2	Ancillary Services Only	A/S	СТ	Flywheel
			3	Base Load Plant	Capacity, Energy	CCGT	Pumped Hydro
T&D Avoided Cost	Phas	Energy	4	Distributed Peaker	Upgrade deferral & Market \$	Circuit Upgrade & CT	Battery
		5 ĕ	5	Substation- Sited Storage	Voltage Reg	Circuit Upgrade	Battery
		Distribut	6	Community Energy Storage	Voltage Reg	Circuit Upgrade	Battery
Bill Reduction, plus Incentives	-	Behind-the-Metar Energy Storage	7	Behind the Meter	Bill Mgt/ Avoid Cost, Market \$	Circuit Upgrade & CT	Battery
Source, KEMA			8	Behind the Meter Utility Controlled	Bill Mgt/ Avoid Cost, Market \$, Grid Rel	Circuit Upgrade & CT	Battery
17		풀피	9	Permanent Load Shifting	Bill Mgt/ Avoid Cost, Grid Rel	СТ	Thermal

Energy storage can provide much greater benefits per MW as a

* Summary slide from STRATEGEN at ESNA conference in September, 2013

NORTH AMERICA

18 15 May 2014

Storage for Transmission

Benefits, Tradable capacity (FTC) credits, and better utilization of existing but constrained transmission capacity

Storage for Distribution

Benefits, Delay financing cost of much larger substation transformer project, e.g. 5MW storage defers need for 20MVA+ XFMR bank increase. Secondary benefits include voltage support and substation asset life extension.

Substation Sited Storage

Application 5

- Distribution Peak Capacity Support (Deferral)
- Distribution Operation (Voltage/VAR Support)
- Loss Reduction
- Transformer Life Extension
- Market Services

Core Cases

- Battery Types: Li-ion, Advanced Lead
- Size: 0.5 MW, 1 MW, 2 MW
- Duration: 2 hour, 4 hour

Original Definition Added Consideration To Be Completed

Source, KEMA

15 May 2014

Storage for Renewables Integration

Energy Storage Efficiently Resolves Wind/Solar Power Fluctuations, Ramping and Load Management Issues

Load Leveling

- · CAES
- Pumped Hydro

Ramping:

- · CAES
- Pumped Hydro
- Battery, Flow Type
- Note: For many utilities, ramping and reducing part load problems are high priority, especially due to power fluctuations from wind/solar plants

Frequency Regulation:

- Battery, Regular or Flow Type
- · Super-Capacitor
- Flywheel
- Superconducting Magnetic Storage

Source: EPRI, Schainker

Source, EPRI

21

Renewables Integration, a PNW Perspective

Network Wind Integration Service

RATES

Except as provided in section 7, Formula Rate Adjustments, below, the total rate for Variable Energy Resource Balancing Service for wind resources shall not exceed \$1.23 per kilowatt per month and each component of the rate shall not exceed the following:

(i)	Regulating Reserves	\$0.08 per kilowatt per month
(ii)	Following Reserves	\$0.37 per kilowatt per month
(iii)	Imbalance Reserves	\$0.78 per kilowatt per month

Source, BPA

Renewables Integration, Major Driver

Renewable Portfolio Standard Policies

Source, DSIRE

23

15 May 2014

Renewables Integration, Major Driver

UET

Non-summer months --- Net load pattern changes significantly starting in 2014

Source, CAISO

Energy Storage for Power Systems, The Market

Grid Storage Market: Analyst firms project >>\$100B energy

storage market by 2020 with CAGR >30%

Lux Research

SK Holdings

Piper Jaffrey

Boston Consulting

Pike Research

IHS Report

\$114B by 2017

\$180B by 2018

\$600B by 2020

\$400B by 2020

14GW installed by 2022

40GW annually by 2022

