

#### Keep the Lights on and the Information Flowing

Daniel Kirschen

Donald W. and Ruth Mary Close Professor of Electrical Engineering

University of Washington

© 2014 D. Kirschen and University of Washington



## Why study blackouts?

- Cost of the blackouts
  - Direct cost (damaged equipment, ..)
  - Indirect cost (loss of economic activity)
  - Social cost

- Cost of preventing blackouts
  - Large, on-going
  - Are we spending our money wisely?

# The conventional explanation



# Triggering event



# Triggering event



# Sagging conductor



# Cascading outages



## N-1 security



The system should remain stable following the loss of a single component

## So, why do we get blackouts?

- Except under extreme weather conditions, the probability of losing two or more components nearly simultaneously is very small
- True if these outages are assumed to be statistically independent events
- Are they?

#### Classical power system security framework



 Operator must act to keep the system in the normal state or bring it back there if an incident takes it into the abnormal state

#### Normal state

- Stable
  - All electrical variables are within their normal range
- N-1 secure:
  - The safety margin between the state of the system and its stability limits is sufficient

## Electrically abnormal state

- The margin between the operating state of the system and its stability limit does not meet the security criteria OR
- The system is unstable OR
- Some load has been disconnected (either involuntarily or voluntarily to prevent a collapse of the system)

#### Limitations of the classical framework



- Considers only the "electrical" part of the system
- Considers only "electrical" events
  - Faults on transmission lines
  - Failures of generating units
  - Changes in the load
- Assumes that the operator has a perfect knowledge and understanding of the state and behavior of the system

## Power system infrastructure

- Electrical infrastructure
  - Lines, cables, generators, transformers, loads, ...
- Information infrastructure
  - Control centers, communication links, measurement devices, protective relays, control systems, ...
- Human infrastructure
  - Operators responsible for maintaining the security of the system (keeping the lights on)



#### Role of the information infrastructure

#### Monitoring

- Keep the operator informed
  - Status of component, voltage and flow measurements, state estimation, on-line security assessment

#### Control

- Automatic:
  - protection relays, automatic voltage regulators, automatic generation control
- With operator intervention:
  - remote switching, optimal power flow, load shedding

#### Failures in the information infrastructure

#### Examples

- Malfunctions of protection relay
- Incorrect or unavailable measurement
- Failure of a remote control command
- Non-convergence of state estimator program
- Loss of a communication link
- Software crash
- Some redundancy:
  - Backup protection, backup computer system, etc...

#### New power system security framework

- Informationally abnormal state
  - Any component of the information infrastructure has stopped operating or has malfunctioned

- Combined abnormal state
  - Abnormal from both the electrical and informational perspectives

### New power system security framework



## **Transitions**



## **Transitions**



## A: Normal to electrically abnormal

#### Examples:

- Failure of one or more electrical components
- Unexpectedly large or fast change in the load
- Failure by the operator to react in a timely manner to a change in system conditions

## A: Normal to electrically abnormal

- Not all electrical failures lead to the electrically abnormal state (e.g. when the system is not stressed)
- Further degradation within electrically abnormal state can happen (e.g. cascade outages)
- Return to normal state involves re-adjustment of electrical control variables (e.g. generation dispatch)

## **Transitions**



### B: Normal to informationally abnormal

#### Examples

- Failure of any element in a measurement chain
- Failure of any element in a remote control chain
- Failure of a local control system (e.g. AVR, governor)
- Failure of a communication link between a substation and the control center
- Failure of a protective device to react properly to an electrical fault
- Inappropriate action by a protective device
- Failure of one of the computer programs that support the monitoring of the system by the operator

## B: Normal to informationally abnormal

- Causes of Type B transitions
  - Hardware failures
  - Software faults
  - Malicious attacks
- Some type B transitions are easily detected:
  - e.g. failure of a communication link
- Other type B transitions are almost impossible to detect:
  - e.g. hidden failures in protection relays
- Return to normal state requires hardware repair or software reset

## **Transitions**



#### C: Electrically abnormal to combined abnormal

- C1 Electronic failure due to loss of power supply
- C2 Hidden failure in protection system revealed by electrical fault
- C3 Alarm processing function at the control center is overwhelmed by number of alarms triggered by electrical problem
- C4 State estimator fails to converge because the electrical system has moved too close to the stability boundary
- C5 An unrelated electronic failure happens after the electrical state has become abnormal

#### C: Electrically abnormal to combined abnormal

- These transitions are dangerous because:
  - They reduce the operator's ability to respond to the electrical problem (C1, C3, C4, C5)
  - They make the electrical problem worse (C2)

## **Transitions**



#### D: Informationally abnormal to combined abnormal

- D1 Abnormal electronic state prevents the operator from becoming aware that corrective action is required.
- D2 Abnormal electronic state prevents the operator from taking appropriate corrective action.
- D3 Based on incorrect information or advice, the operator takes inappropriate action(s)
- D4 The failure of an electronic component triggers an electrical transition.
- D5 A cyber attacker triggers actions that deteriorate the electrical state of the system
- D6 An unrelated electrical deterioration takes place after the electronic state has become abnormal.

#### D: Informationally abnormal to combined abnormal

- Probably the most dangerous transitions
- Failures of type D4 are not very likely because of built-in failsafe mechanisms
- Need to study the details of types D1, D2, & D3
  - How likely are these transitions?
  - How quickly would an electronic failure cause electrical problems?
  - How could such problems be mitigated?
  - How could such transitions be caused maliciously?

# Examples

| Incident                 | Transition |
|--------------------------|------------|
| North America (2003)     | D1         |
| London, UK (2003)        | C2         |
| West Midlands, UK (2003) | C2         |
| Italy (2003)             | D1         |
| UCTE (2006)              | D1         |
| WSCC (1996)              | C2         |
| Ireland (2005)           | D4         |
| Québec (1988)            | D2         |
| Québec (c. 1985)         | C3         |
| Sweden/Denmark (2003)    | -          |

#### Arizona-Southern California Outages on September 8, 2011



#### Enhancing the information infrastructure

- Enhanced functionality
  - Better information about the state of the system
  - Faster, more accurate control actions
  - → Need for safety margin is reduced
  - → Economics pushes towards operation at the limit
  - → Risk of customer outages is not necessarily reduced

#### Enhancing the information infrastructure

- Enhanced reliability
  - Reduce risks
    - Missing or incorrect information
    - Incorrect or failed control action
  - → Significant reduction in risk of customer outages

### Enhanced modeling

- Electrical infrastructure
  - Excellent structural and functional models
  - Reasonably good reliability data
- Information infrastructure
  - Good structural models
  - Very poor functional models
  - Complete lack of reliability data
- Human infrastructure
  - **—** ?

# What is the state of the system?





# Situation Awareness (SA)

"The perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future".



#### Main sources of lack of SA

### Software applications

- Examples: Alarm processing, State estimator, contingency analysis tools, mimic diagram
- USA/Canada blackout in 2003

#### Real-time measurements

Missing, conflicting or ambiguous data can create confusion

#### **Automation**

- Out-of-the-loop syndrome
- · Lack of operators' timely and effective reaction when required

#### Environmental factors

 Data/alarm overload, high complexity of Graphical User Interface, time pressure, ambient noise levels

#### **Individual factors**

- Lack of experience and training, fatigue, limited working memory capacity, inadequate knowledge
- UCTE incident in 2006

#### Communication with others

- Communication within the same control center or with different control centers
- Italian blackout in 2003

## A very simple model of SA

#### **Sufficient**

Operators are able to receive and interpret correctly the required information

Effective reaction to electrical disturbance

#### Insufficient

Operators fail to form an accurate and complete picture of their control area

- 1. No action
- 2. Correct but delayed action
- 3. Incorrect action

### Results based on this simple model



- Insufficient SA: 85 % of the critical overloads lead to cascading phase due to lack of operators' response.
- Sufficient SA: no cascading failures or load shedding

#### Conclusions

- Proposed framework clarifies how failures in the information infrastructure affect the ability of the power system to deliver energy to consumers
- Provides a basis for analyzing in more details the mechanisms that could lead to major problems
- Analysis of actual incidents shows that this framework matches real-life
- Need to get a better understanding of SA
- Need quantification of SA



# Examples with references

| Incident         | Transition | Reference                                                                                                                  |
|------------------|------------|----------------------------------------------------------------------------------------------------------------------------|
| North America    | D1         | https://reports.energy.gov/                                                                                                |
| (2003)           |            |                                                                                                                            |
| London, UK       | C2         | http://www.ofgem.gov.uk/About%20us/enforcement/Investigations/ClosedInvest/Pages/Closed.aspx                               |
| (2003)           |            | losedilivest/rages/Closed.aspx                                                                                             |
| West Midlands,   | C2         | http://www.ofgem.gov.uk/About%20us/enforcement/Investigations/C                                                            |
| UK (2003)        |            | losedInvest/Pages/Closed.aspx                                                                                              |
| Italy (2003)     | D1         | http://www.ucte.org/publications/otherreports/                                                                             |
| UCTE (2006)      | D1         | http://www.ucte.org/publications/otherreports/                                                                             |
| WSCC (1996)      | C2         | http://www.nerc.com/~filez/reports.htm l                                                                                   |
| Ireland (2005)   | D4         | http://www.eirgrid.com/EirgridPortal/uploads/Transmission%20System%20Performance%20Report%202005/EirGrid%20TSPR%202005.pdf |
| Québec (1988)    | D2         | Not Available                                                                                                              |
| Québec (c. 1985) | C3         | Not Available                                                                                                              |
| Sweden/Denmark   | -          | http://www.svk.se/web/Page.aspx?id=5687                                                                                    |
| (2003)           |            |                                                                                                                            |