





#### Evolution of Control for the Smart Grid

Anjan Bose Washington State University Pullman, WA, USA

Distinguished Lecture IEEE-PES Chapter Seattle, WA November 25, 2013









# Smart Grid Projects in USA

- \$4.5 billion
- Investment Projects (\$3.8B)
- Demonstration Projects (\$600M)
- Training Projects (\$100M)
- Transmission (PMUs)
- Distribution Automation
- Customer (smart meters)



# What is a SMART Grid?

- Self-heals
- Motivates and includes the consumer
- Resists attack
- Provides power quality for 21<sup>st</sup> century needs
- Accommodates all generation and storage options
- Enables markets
- Optimizes assets and operates efficiently





### The Past (before 1960s)

- Hard wired metering
- Ink chart recording
- Light and sound alarming
- Hard wired remote switching
- Analog Load Frequency Control (1930s)
- Economic Dispatch (1950s)
- ED was first to go digital





- The digital control center (SCADA-AGC)
- The RTU to gather digital data at substation
- Comm. channel from sub to control center (CC)
- The SCADA
  - The Data Acquisition from RTU to CC
  - The Supervisory Control signal from CC to RTU
- The screen based operator display
- Automatic Generation Control (AGC)
  - The digital algorithm for ED
  - The digital version of LFC



#### **Communication for Power System**







# The Present (since 1970s)

- The Energy Management System (EMS)
- State Estimation (SE)
- Static Security Analysis (n-1)
- Dynamic Security Analysis (stability)
  Transient, Oscillatory, Voltage
- Optimal Power Flow based analysis
  - Preventive Action calculation
  - Corrective Action calculation



# **Evolution of Computer Architecture**

- Special real time computers for SCADA-AGC
- Mainframe computer back ends for EMS
- Redundant hardware configuration with checkpoint and failover
- Multiple workstation configuration
  - Back-up is more flexible
- Open architecture initiated
- CIM (Common Information Model) standard







#### **Balancing Authorities**





#### West European Power Grid









# **Monitoring the Power Grid**

- Visualization
  - Tabular, graphics
- Alarms
  - Overloaded lines, out-of-limit voltages
  - Loss of equipment (lines, generators, comm)
- State estimator
- Security alerts
  - Contingencies (loading, voltage, dynamic limits)
  - Corrective or preventive actions





# **Control of the Power Grid**

- Load Following Frequency Control
  - Area-wise
  - Slow (secs)
- Voltage Control
  - Local and regional
  - Slow to fast
- Protection
  - Mostly local, few special protection schemes
  - Fast
- Stability Control
  - Local machine stabilizers
  - Remote special protection schemes
  - Fast





- Many substations have
  - Data acquisition systems at faster rates
  - Intelligent electronic devices (IED)
  - Coordinated protection and control systems
  - Remote setting capabilities
- Data can be time-stamped by satellite







#### **Phasor Measurements**





#### **Proposed Communications**







# Each Application – Different Data

- Monitoring at the control center
  - Needs all data points
  - But at slow rates (every few seconds)
- Special Protection Schemes
  - Needs few data points
  - But at fast rates (many times a second)
- Each application must access this data in a different way
  - Moving real time data from source to application is a complex optimization task

# WASHINGTON STATE College of Engineering and Architecture UNIVERSA CONSTRATE COLLEGE OF Engineering and Architecture









#### **Data Base Issues**

- Real time data base must be distributed
  - Large amounts of calculated data must be part of this data base
- Static data base must be distributed
- Historical data base will require still another design
- Substation data bases and system level data bases have to be coordinated
- All data bases in the same interconnection will have to be coordinated
- Standards will be key





- Wide-Area Monitoring Systems (WAMS)
  - First installation of PMUs was called WAMS
- Wide-Area Protection
  - Event driven
  - Logic processing of non-local inputs/outputs
  - Switching
  - Now called SPS or SIPS
- Wide-Area Control
  - Multiple non-local input/output
  - Analog input/output

# How do we check feasibility?

- Develop controller
- Test on simulation
  - Nonlinearities
  - Discontinuities (digital control)
  - Time delays (latencies)
- Test on real time data
- Test in real time (without closing the loop)



### **A Critical Missing Piece**

#### **Simulation Test Bed for PMU Control Applications**







- Present
  - PMU measurements added to traditional SE
  - Marginal improvement in accuracy
  - No improvement in update frequency
- Future
  - PMU-only SE (observability required)
  - Linear, sub-second updates, higher accuracy
  - Substation level/Area level





# **Two-Level Linear State Estimator**

- Substation Level
  - Substation Model
  - Circuit Breaker State Estimator
  - Bus Voltage State Estimator
  - Bad Data Detection & Identification
- Control Center Level
  - System Model
  - Topology Processor (system level)
  - State Estimator
  - Bad Data Detection & Identification





#### SE Solution at Each Substation SE Solution at Control Center 30 times per second









### **Model Based Control**

- Real Time Model is updated by State Estimator
  - Static model updated in minutes
- Hundreds of Contingency scenarios studied
  - Operator is alerted
- Remedial Action can be calculated by OPF
- **Can the loop be closed?** 
  - Faster update of Real Time Model is needed



#### **Closing the Loop**

- SE can update faster than SCADA data today
- Use SE output for monitoring
  - Operator visualization
  - Alarming
- Calculate Preventive Control and close loop
- Calculate Corrective control
  - Is it fast enough to close loop?



# **DISTRIBUTION AUTOMATION**

- Measurements along the feeder
- Switches, transformer taps, shunt capacitor and inductor controls
- Communications: Radio, Power Line Carrier, Fiber backhaul
- Closer voltage control increases efficiency
- Greater switching ability increases reliability
- Better coordination with outage management
- Sets up for distributed generation, demand response, electric vehicles or local storage









### **Backward Algorithm**

#### 1. Enter ON-Case Data

- ZIP Parameters
- Tap Settings
- Capacitors Status
- Demands (P & Q or KVA and P.F.)

#### 2. Check Switch Capacitors Status

If it is ON then extract its value from Q and calculate new demands (KVA and P.F.)

#### 3. Do Loop

- 1. Run Load Allocation
  - Using ZIP parameter for each section
- 2. Find New Tap Settings
  - Using EOL setting algorithm in SynerGEE for Voltage Regulator
- 3. Run Load Flow
  - Get OFF-Case estimation as results
- 4. Check if change in voltages and demands are within acceptable range
  - If YES
    - Finish loop
  - ➢ If NO
    - Do loop using new demands and voltages

#### 4. Find KVA, KW, and KVar Saving

Compare with ON-Case





# **Building Automation**

- Smart Meters
  - Gateway between utility and customer
  - Communication to utility and home appliances
  - Time-of-day and real-time rates
- Applications
  - Optimize energy efficiency and energy cost
  - Demand response
  - Can integrate generation (roof PV), storage (EV)
- Microgrids







- Controls at the substation level get more sophisticated every day
- Real time data collection increases at the subs
- Utilizing these measurements and controls at the system level remains difficult
- The communication infrastructure to move this data has to be built
- The software infrastructure to handle the data has to be built
- Application development and testing environments are needed